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Abstruct- Outer solar system exploration  and missions to 
comets and planets with severe environmental  conditions 
require long-term survivability  of space systems.  This 
challenge has recently been approached with new ideas, 
such as using mechanisms  for  hardware adaptation inspired 
from biology. The application  of evolution-inspired 
formalisms to hardware design and self-configuration lead 
to  the  concept  of  evolvable  hardware (EHW). EHW  refers 
to self-reconfiguration of  electronic  hardware by 
evolutionary/genetic  reconfiguration mechanisms. The 
paper describes a fine-grained Field Programmable 
Transistor Array (FPTA) architecture  for  reconfigurable 
hardware, and  its implementation on a VLSI chip. A fxst 
experiment  illustrates  automatic  synthesis  of  electronic 
circuits  through  evolutionary design with the chip-in-the- 
loop. The chip  is  rapidly  reconfigured  to  evaluate candidate 
circuit designs. A second, fault-tolerance  experiment shows 
how evolutionary  algorithms can recover functionality  after 
being  subjected to faults, by finding new circuit 
configurations  that  circumvent  the faults. 
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hardware by evolutionary/genetic reconfiguration 
mechanisms. In a broader sense, EHW  refers  to  various 
forms of  hardware, from sensors  and antennas to complete 
evolvable space systems that  could  adapt  to  changing 
environments  and,  moreover, increase their  performance 
during  the  mission. 

There  are two main benefits  EHW  can bring to spacecraft 
survivability. Firstly, EHW can help  preserving  existing 
functions, in conditions  where  hardware  is  subject  to faults, 
aging, temperature  drifts  and radiation, etc. Secondly, new 
functions can be generated (more precisely new hardware 
configurations can be synthesized to provide required 
functionality) when needed. 

This paper reports  on  experiments  that  illustrate how 
evolutionary  algorithms can design analog  and  digital 
circuits and recover functionality  when lost due to faults, by 
finding new circuit  configurations  that  circumvent  the 
faults. The search for an electronic  circuit realization of a 
desired transfer  characteristic can be made in software  as in 
extrinsic evolution, or in hardware as in intrinsic evolution. 
In extrinsic  evolution  the  final solution is downloaded  to  (or 
becomes a blueprint  for)  the hardware. In intrinsic 
evolution  the hardware actively participates in the  circuit 
evolutionary process and is  the  support on which candidate 
solutions are evaluated. 
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1. INTRODUCTION 
Long-term survivability  of  space systems, as required,  for 
example, by  outer  solar system exploration  and missions to 
comets and planets with severe  environmental  conditions, 
has recently been approached with new ideas, such as the 
use of biology-inspired mechanisms for hardware 
adaptation. The application of evolution-inspired 
formalisms to  hardware design and self-configuration lead 
to  the concept of  evolvable  hardware (EHW). In the narrow 
sense EHW  refers  to self-reconfiguration of  electronic 

A variety of circuits have been synthesized through 
evolutionary means. For example, Koza used Genetic 
Programming (GP) to grow an “embryonic” circuit to one 
that  satisfies desired requirements [l]. This approach was 
used for  evolving a variety of  circuits,  including  filters  and 
computational circuits. An alternative encoding technique 
for analog circuit  synthesis, which has  the  advantage of 
reduced computational load was  used by Lohn and 
Colombano[2] for automated filter design. On-chip 
evolution was demonstrated by Thompson [3] using an 
Field Programmable Gate Array (FPGA) as the 
programmable device, and a Genetic Algorithm (GA) as the 
evolutionary mechanism. More  details  on  current work in 
evolvable hardware are  found in  [4-71. Evolutions  of analog 
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circuits reported in [l]  and [2] were  performed in 
simulations  without  concern for a physical  implementation. 
It shows that evolution  can lead to circuit designs that 
compete,  or  even  exceed in performance  those  of humans. 
Current  programmable  analog  devices are very limited  in 
capabilities and do  not  support the implementation  of the 
resulted design (but, in principle, one can test their validity 
in circuits built from discrete components, or in an  ASIC 
(Application Specific Integrated Circuit)). More recently, 
evolutionary  experiments  were  performed  on Field 
Programmable  Analog  Arrays [ 181 and ASIC [ 1 11. 

There is another characteristic that makes electronic devices 
an attractive domain for applying evolution; the possibility 
to  produce electronic systems that are inherently insensitive 
to faults such as silicon defects by  using  evolution in 
hardware  to design fault-tolerant or highly reliable systems. 
The  evolution is even able to self-repair on-line by 
exploiting defective components as if they  were  working 
parts [15-161. 

This  paper is organized  as follows: Section 2 presents an 
evolution-oriented architecture for reconfigurable  hardware 
based on the concept  of Field Programmable Transistor 
Array. Section 3 presents the experimental setup, including 
details of the evolutionary  design tool, the FPTA chip  and 
the hardware  evaluation board. Section 4 presents automatic 
synthesis of  an electronic circuit by intrinsic evolution  (on 
FPTA chips). Section 5 describes a fault-tolerant 
experiment in which functionality is recovered after a fault. 
Section 6 presents some lessons learned  from the 
experiments and section 7 concludes the paper. 

2. TOWARD EVOLUTION-ORIENTED CHIPS 

In the context  of electronic synthesis on  reconfigurable 
devices, the architectural configurations are encoded in 
“chromosomes” that define the state of the switches 
connecting  elements in the reconfigurable  hardware.  The 
main steps in evolutionary synthesis of electronic circuits 
are the following. First, a population of chromosomes is 
randomly  generated  to represent a pool  of circuit 
architectures. The  chromosomes are converted into circuit 
models (for extrinsic EHW)  or control bitstrings 
downloaded  to  programmable  hardware (intrinsic EHW). 
Circuit responses are compared against specifications of a 
target response  and individuals are ranked  based  on  how 
close they come to satisfying it. Preparation for a  new 
iteration loop  involves  generation  of a  new population  of 
individuals from the pool  of the best individuals in the 
previous generation. Here,  some individuals are taken as 
they  were  and  some are modified  by genetic operators, such 
as chromosome  crossover  and  mutation.  The  process is 
repeated for a number  of generations, resulting in 
increasingly better individuals. The  process is usually ended 
after a given  number of generations, or  when the closeness 
to the target response  has  been  reached. In practice, one or 

several solutions may be found  among the individuals of the 
last generation. 

Current efforts in the evolution  of  hardware  have  been 
limited to  simple circuits [SI. For  experiments  with digital 
circuits, this limitation may  be  caused  by a  lack of  power  of 
evolutionary  techniques in such  search spaces. For  analog 
circuits the limitation appears  to  come  from a  lack of 
appropriate reconfigurable  analog  devices  to  support the 
search. This  precludes  searches directly in hardware  and 
requires evolving on hardware  models.  Such  models require 
evaluation  with circuit simulators such as SPICE; the 
simulators need to solve differential equations and, for 
anything  beyond  simple circuits, they require too  much  time 
for practical searches  of millions of circuit solutions. A 
hardware  implementation offers a big  advantage in 
evaluation  time for a circuit; the time for evaluation is 
determined  by the goal function. For  example,  considering 
an A/D converter  operating at a 100 kHz  sampling rate the 
electronic response  of the A/D converter is available within 
10 microseconds,  compared  to (an over-optimistic) 1 second 
on a fast computer  running  SPICE; this advantage increases 
with the complexity  of the circuits. In this case the lo5 
speedup  would  allow evaluations of  populations  of millions 
of individuals in seconds instead of days. 

Most  reconfigurable  devices are digital, and  while several 
levels of granularity are in use, the most  common  ones are 
configurable at the gate-level. In the analog  programmable 
devices the reconfigurable active elements are Operational 
Amplifiers, such as in Field Programmable  Analog  Arrays 
(FPAA) with  only  very  coarse granularity and few 
programmable  components,  allowing specified functionality 
with good precision, having a limited range  of possible 
EHW  experiments.  The  optimal  choice  of  elementary  block 
type and granularity is task dependent.  At least for 
experimental  work in evolvable  hardware,  it  appears a good 
choice  to  build  reconfigurable  hardware  based  on  elements 
of the lowest level of granularity. Virtual higher-level 
building  blocks can be  considered  by  imposing 
programming constraints. An example  of this would entail 
forcing groups  of  elementary cells to act as a whole (e.g. 
certain parts of their configuration bitstrings with the 
interconnections for the N transistors implementing a 
NAND  would be  frozen). Ideally, the “virtual blocks” for 
evolution  should be automatically  definedclustered  during 
evolution (an equivalent  of the Automatically  Defined 
Functions  predicted  and  observed in software evolution). 

The idea of a field programmable transistor array was 
introduced first in [ 111. The FPTA is a concept  design for 
hardware  reconfigurable  at transistor level.  As both  analog 
and digital CMOS circuits ultimately rely on functions 
implemented with transistors, the FPTA appears  as a 
versatile platform for the synthesis of  both  analog  and 
digital (and  mixed-signal) circuits. Further, it is considered 
a  more suitable platform for synthesis of  analog circuitry 



than existing FPGAs or FPAAs, extending the work  on 
evolving  simulated circuits to evolving  analog circuits 
directly on the chip. The FPTA module is an array of 
transistors interconnected  by  programmable switches. The 
status of the switches (ON or OFF) determines a circuit 
topology  and  consequently a specific response. 
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Figure 1 Module of the Programmable Transistor Array 

Thus the topology  can  be  considered as a function of  switch 
states, and can be  represented  by a binary  sequence,  such  as 
“101 1 . .  .”, where  by  convention  one  can assign  1 to a switch 
turned  ON and 0 to a switch  turned OFF. The FPTA 
architecture allows the implementation  of  bigger circuits by 
cascading FPTA modules with external wires. 

Figure 2 Schematic of a simple circuit implemented on  a 
FPTA module (with leakage through the finite resistance of 

OFF  switches as dotted lines on the right figure). 

To offer sufficient flexibility the module  has all transistor 
terminals connected  via  switches  to  expansion terminals 
(except  those  connected to power and  ground). Issues 
related to  chip  expandability  were treated in [ 111. Figure 1 
illustrates an  example of a FPTA module consisting of 8 
transistors and  24  programmable switches. In this example 
the transistors P1-P4 are PMOS and N5N8 are NMOS,  and 
the switch-based connections are in sufficient number  to 
allow a majority  of  meaningful  topologies for the given 
transistor arrangement,  and  yet less than the total number of 
possible connections. Programming the switches  ON  and 

OFF defines a circuit for which the effects of  non-zero, 
finite impedance  of the switches  can  be  neglected in the first 
approximation. An example  of a circuit drawn  with this 
simplification is given in Figure 2. 

3. TEST BED FOR EVOLUTIONARY EXPERIMENTS 
An evolutionary  design tool was  developed  to facilitate 

experiments in simulated  and  hardware  evolution [17]. The 
tool illustrated in Figure 3 can  be  used for synthesis and 
optimization  of new devices, circuits, or architectures for 
reconfigurable  hardware.  The tool proved  very useful in 
testing architectures of  reconfigurable HW and 
demonstrating  evolution  on a dedicated  reconfigurable chip. 
In its current implementation the tool uses the public 
domain Parallel Genetic  Algorithm  package,  PGAPack, a 
public  domain  version of SPICE 3F5 as circuit simulator 
and an evolvable  hardware test bed built around  LabView. 
An interface code links the GA with the simulator  and with 
the hardware  where potential designs are evaluated, while a 
GUI allows  easy  problem  formulation  and visualization of 
results. At each  generation the GA produces a  new 
population  of binary chromosomes,  which get converted 
into voltages in Netlists that describe candidate circuit 
designs  and into configuration bits for the reconfigurable 
devices. Netlists are further simulated  by  SPICE  and 
configuration bits are downloaded into the hardware  device 
by  LabView. More details about the tool are given in 
[101,[171. 
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Figure 3 Environment for evolutionary design. 

After successful evolution  on the simulated FPTA a test 
chip  implementing the FPTA architecture was developed. 



Circuit evolutionary synthesis directly on the chip  became 
possible at  an  expected accelerated pace  of  over two orders 
of  magnitude  compared to the simulation on the 
supercomputer  (estimated -5 seconds  compared to -20 
minutes for the experiment described). In the experimental 
simulations, the size of the transistors was fixed. The 
programmable  switches  were  implemented  with transistors, 
acting as simple  T-gate switches. 

The  response  of four mutants is illustrated in the screen 
capture  shown in Figure 5 (Labview display of the signals 
captured  by the data acquisition boards). Notice the 
“mutations” in the genetic code  of the solutions obtained  by 
evolution (vertical chromosomes  R24  to R1 reading  from 
top to bottom,  corresponding  to  switches S24 to S1 in 
Figure 1) compared  with the human-designed circuit 
(rightmost vertical string). 

Each  chip contains one FPTA module  and  was fabricated as 
a  Tiny  Chip  through MOSIS, using  0.5-micron CMOS 
technology.  The test board  with  four chips mounted  on it is 
illustrated in Figure 4. 

Figure 4 A test board with four FPTA chips 

The  hardware  evaluation  board is controlled by National 
Instruments  data acquisition hardware and software 
(Labview) and integrated into the evolutionary  design 
envionment. 

4. AUTOMATIC SYNTHESIS OF A NEW FUNCTION 

The  following  experiment  performed in hardware  on the 
FTPA chip illustrates the evolutionary synthesis of  to 
computational circuit. The desired functionality is a 
nonlinear DC input-output characteristic (a  Gaussian 
current-voltage characteristic). Four chips were 
programmed in parallel with bit-string configurations 
corresponding  to  four individuals of  a  population  of 1000; 
after evaluation the chips were  reprogrammed with the 
chromosome of the next  four individuals, and so on until all 
1000 in one  generation  were tested. Evolution led to 
“Gaussian” circuit solutions within 20-30 generations. The 
current speed  of  evaluation is 1000 circuits in 8.25 seconds 
using the four FPTA chips in parallel; another  order of 
magnitude  speed-up is expected when some existing data 
acquisition bottlenecks will be solved. 

The  following GA parameters  were used: 
Population: 1000, Chromosome size: 24 bits for 1 FPTA, 
and 52 to 88 bits for 2 FPTAs (the number  depends  on 
interconnection schemes),  Evaluation samples: 30, Mutation 
rate: 4%,  Crossover rate: 70%,  Tournament Selection: 20 
individuals, Elite Strategy: 9% population size (88 
individuals), Fitness Function: Square  Root  Mean Error. 

Figure 5 The “Gaussian”  response  of  four  “mutants” and 
their “genetic code” compared  to the code  of  a human- 

designed circuit. 

5. A SELF-HEALING EXPERIMENT 
The aim of this experiment was to test the reliability of  a 
circuit design  obtained  by  evolution  and the availability of 
the electronic circuit using the on-line self-repairing 
property  of the evolutionary  mechanism [14]. Two  FPTAs 
were  cascaded interconnecting them  by three external wires. 
The  connection terminals P2-Drain, P4-Drain and  N6- 
Source of the first FPTA were  connected respectively to  P3- 
Source,  N5-Drain and  N7-Drain. The input voltage  was 
injected to the N6-Gate  of the first FPTA and the output 
load was  connected  to the P4-Source of the second FPTA. 
Both  FPTAs received a current bias at the N7-Drain 
terminal. 

Evolution started with a  randomly initiated population  of 
coded configurations, which  were  transformed into 
connection patterns; these were  downloaded  to the chip. 
The  output of the generated circuits was  compared  with the 
desired DC Gaussian and their difference was  transformed 
in a fitness function (which  should in the ideal case  be  zero 
or very small). During the evolution the fitness function 
shows  improvements  of the search as illustrated in figure 6. 
The  codes for circuits generating best responses (i.e. closest 
to target according  to  some metric) were selected, and 
suffered genetic operations, as controlled by the 
evolutionary algorithm. After  looping for a  number  of  times 
(75 generations), a circuit that best satisfied the 



requirements  was  found and left operational to  provide the 
desired function. The  performance  of the chip  continued to 
be  monitored  using the fitness function. 
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Figure 6 Fitness value  monitoring the performance  of the 
circuit. At  generation 134, we inject a fault by  removing  one 

external wire between the two FPTA's. 

At  any  time if the performance  decreases below a certain 
threshold (e.g.  when a fault is injected), the evolution 
process restarts the search for a new circuit configuration, 
taking into account the previous circuit configurations in the 
population. In this experiment,  a fault was injected by 
disconnecting  one of the external connection between the 
two  FPTAs  used  by the operational circuit. At that time  a 
lowering  of  performance  but  not  a  complete failure was 
observed. The  reason for the graceful degradation is that the 
population  of circuits obtained  by the evolution  process 
contains mutants insensitive to faults having the same 
phenotypic effect as  a genetic mutation  as  shown on figure 
7. 
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Figure 7 Target  Gaussian  response (triangle marker), the 
best individual (square  marker)  and its four mutants 

insensitive to faults having the same  phenotypic effect as  a 
genetic mutation. 

When the fault was injected the GA restarted with the 
population  of its last run, which  included the solution that 
was currently affected by fault and  some  of its mutants.  The 
faulty part became just another  component  to  be used: the 
evolutionary  algorithm  did  not "know" that the part was 

supposed to do  something else.  While starting with  a 
random population took about the same  time as finding a 
solution in the first place (not shown), starting with the last 
available population led to  recovery in about 113 of the time 
while the circuit performance  recovered  to 90% (shown in 
figure 8). 
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Figure 8 Target  Gaussian  response (triangle marker), the 
best individual (square  marker)  and its four  mutants after 

on-line self-repaired by evolution. 

The  experiments used a  Genetic  Algorithm (GA) with the 
following parameters: population 500, mutation probability: 
0.04, cross-over probability: 0.7, elite strategy: lo%, fitness 
function: mean square error. The GA obtained the Gaussian 
response  before 100 generations, in about 14 minutes and 
recovered the fault in about 4 minutes. 

6. LESSONS LEARNED 
Speed-up by evaluations in hardware 

Hardware evaluation can  produce  a  speed-up, especially 
when  one simulates large, complex  analog circuits, and the 
circuit response is rapid. One aspect that can however be 
easily overlooked is the frequency  of  operation for which a 
certain circuit is designed.  There are limitations to 
increasing the  speed of  configuration  and test in hardware. 
For  example, the output  of the Gaussian circuit on the FPTA 
started attenuation  when the input ramp signals were 
exceeding 1kHz. Thus, no more  than 1000 circuits per 
second  (of desired low frequency  response)  could  be 
reliably evaluated. Even  though  some artifacts of the 
particular FPTA  design  and load  choice  may  be involved, it 
appears natural that evaluating the circuits at  a different 
frequency  than that of  intended  functioning  may  introduce 
errors. Evaluation in parallel is an alternative speed-up 
technique, and at least in the experiments  with the FPTA 
chips no significant differences were  noted  between the 
implementation  of the same circuit on different chips 

Effect of Evolution for Fault-tolerance and self-healing 

Some insensitivity to faults that has the same influence on 
the circuit as a genetic mutation  tends  to arise for free when 
using evolution. Tolerance  to  an arbitrary and large set of 



faults can possibly be achieved by testing  the individuals 
circuit in the presence of possible faults,  athough it  may  be 
time-consuming. We observed  also  that  defects  that  are 
permanent have properties  that  are put to use for on-line 
self-repair. It would be  interesting  to evaluate the 
combination of  the evolutionary approach and  the more 
traditional redundancy methods such as explored in the 
“embryological”  development  approach [ 131. These initial 
experiments while illustrating  the power of evolutionary 
algorithms to design digital  and analog circuit  and  to 
maintain functionality by recovering from faults without 
explicit redundancy, only prepare  the  ground  for  further 
questions. Examples of  further  questions include addressing 
how can the  evolutionary mechanism be protected such that 
its implementation is not  itself subject to  faults,  or how 
should the  fitness  function be computedstored. 

8. CONCLUSION 

This paper  demonstrates two features enabled by  evolvable 
hardware and which may play an important role in 
flexibility and survivability  of  future space hardware. These 
features  are  automatic  synthesis of circuits  to perform new 
functions and  self-healing - recovery from faults. 
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